Abiotic stress tolerance in rice for Asia: progress and the future

نویسندگان

  • H. R. Lafitte
  • A. Ismail
  • J. Bennett
چکیده

Various abiotic stresses limit rice production in rainfed environments, which comprise about 45% of the global rice area. Important stresses include water deficit, submergence, salinity, and deficiencies of P and Zn. In recent years, advances in physiology, molecular biology, and genetics have greatly improved our understanding of how rice responds to these stresses and the basis of varietal differences in tolerance. Progress has relied on the application of rather specific phenotypic screens that allow the effects of stress to be distinguished from general differences in adaptation of diverse parents. QTLs have been identified that explain a considerable portion of observed variation, and in some cases, the genes underlying specific QTLs have been identified. Transformation has been used to assess the effects of altered expression of specific stress-related genes, allowing confirmation of the importance of particular metabolic pathways. Through expression profiling of many genes simultaneously, it has been possible to identify three types of stress-responsive gene networks: early signaling pathways, adaptive responses, and genes that reflect downstream results of damage. For crop improvement, the identification of useful allelic variation for genes in the second group may be the most promising approach. Once such genes or gene combinations are identified, either molecular approaches or trait-specific physiological screens can be used to search for these superior alleles. Marker-assisted backcrossing can then be applied to incorporate these alleles into agronomically superior germplasm. Media summary Abiotic stresses such as drought, salinity, submergence, and nutrient deficiencies limit rice production. Recent advances in our understanding of the physiology and molecular biology of stress tolerance in rice are being used to develop improved rice varieties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Rice (Oryza sativa L.) Drought Tolerance by Suppressing a NF-YA Transcription Factor

The response to drought stress is a complicated process involving stress sensing, intracellular signaltransduction, and the execution of a cellular response. Transcription factors play important roles in the signaling pathways including abiotic stress. In the present study a rice NF-YA transcription factor gene was partially characterized following dehydration. Disrupting the gene via a T...

متن کامل

مطالعه پاسخ به تنش خشکی ژنوتیپ‌های برنج در ابتدای مرحله زایشی با استفاده از شاخص‌های تحمل به تنش

Drought stress is one of the major abiotic stresses that limits rice productivity in the world. In this study 83 diverse rice genotypes were evaluated under reproductive-stage drought stress and non-stress conditions in a completely randomized design with three replications. Eleven well known stress tolerance and susceptibility indices were calculated based on the grain yield under stress and n...

متن کامل

شناسایی رونوشت‌های با افزایش تظاهر در رقم برنج (Oryza sativa L.) مقاوم به تنش شوری با استفاده از تکنیک cDNA-AFLP

      Salt stress is one of the main abiotic stresses for rice that causes negative effects on its growth and productivity. In present study, effects of salt stress on differential gene expression of some genes which are responsible in salt stress were investigated in two rice tolerant and sensitive genotypes (FL478 and IR29) by applying cDNA-AFLP technique. Among the TDFs (Transcript Derived F...

متن کامل

Assessment of drought tolerance in land races of bread wheat based on resistance/ tolerance indices

One of the possible ways to ensure future food needs of an increasing world population involves the better water use through the development of crop varieties which need less water and are more tolerant to drought. In order to study the response of twenty landraces of bread wheat to drought stress, an experiment was conducted in a randomized complete block design with three replications under t...

متن کامل

Study of antioxidant defense genes expression profile pattern of rice (Oryza sativa L.) cultivars in response to drought stress

Drought stress is one of the important factors that restrict crop production in the world. This study was conducted to investigate defense gene expression in response to drought stress, and also to evaluate the drought tolerance and its mechanism in rice cultivars based on randomized complete block design in two separate environments (drought stress and non-stress). The rice cultivars used incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004